Gå til indhold

Information om coronavirus

Applied biostatistics

A “hands-on”-course on the evaluation of data in biological sciences.

Tilmelding er lukket

Tilmelding til valgfrit element er åben i uge 12/13 for det kommende efterårssemester og i uge 42/43 for det kommende forårssemester.

Registration for the elective module is open in week 12/13 for the spring semester and in week 42/43 for the autumn semester.

About the course

Aims and objectives

The aim of the course is to achieve the general capability to collect, manage, evaluate, and interpret scientific data by means of the free, renowned statistical software package [R]. Moreover, this module aims at promoting the understanding of statistical evaluation as used in scientific studies and the use of statistical parameters in inference as a tool to provide “scientific evidence”.

Content of the course

The contents of this module are organised into seven different themes:

Theme 1: Inference, data types and scales

  • Definition of the terms sample, population, variable, parameter, etc.
  • Types of data: parametric, non-parametric, nominal categorical, ordinal categorical, interval numerical, ratio numerical
  • Quality indicators of scales
  • The principle of inference.

Theme 2: Description of univariate data

  • Introduction of R and R Studio
  • Measures of centrality: mean, median, mode
  • Measures of variation: variance, standard deviation, standard error of the mean, coefficient of variation, percentiles, inter-quartile range, and confidence intervals
  • Distributions: normal Gaussian, Poisson, binomial, others.

Theme 3: Probability and presentation

  • How to present data: tables and charts
  • Rules of probability calculation
  • Likelihoods and tree diagrams.

Theme 4: Hypothesis formulation, acceptance, and rejection based on statistical testing for two groups (bivariate testing)

  • Two-group comparisons, parametric and non-parametric
  • 2×2 crosstabulations and measures of association (exposure-outcome interactions)
  • Correlations between two datasets.

Theme 5: Comparison of more than two groups and multivariate evaluations

  • ANOVA incl. post-hoc testing
  • Crosstabulation tables and their evaluation
  • Simple and multiple correlations
  • Elemental multivariate models.

Theme 6: Bayesian statistics

  • Novel strategies to overcome weaknesses of traditional statistical approaches
  • Predicting likelihood of future events.

Theme 7: Linear optimization of nutrient-food interactions

  • Linear programming for nutrition-related problems
  • Price-based optimization strategies for fully nutritious diets.

Each point will be approached in a hands-on manner. The focus will be on applied science, meaning that application aspects will be given priority over the theoretical background. Statistics is no sorcery!

Learning outcomes

Learn how to arrange, evaluate, and interpret the data you raised and learn to understand how statistical data were raised and interpreted by other scientists. Apply statistics to your own data.

Learning methods

The teaching methods applied in this module will be: theoretical approach by lecturing and individual preparation (self-study), common exercises in class, problem solving in groups and at an individual level, and presentations of problem solutions. The learning process will be supported by ICT (i.e. videos and quizzes).

Course assessment/examination

The exam is an individual product which will be graded based on the 7-point scale.

***

The course takes place at Nørrebro.

Do you have unanswered questions after reading this description? Find contact information at the bottom of this site.

Practical information

The course is eligible for any student taking an education at any of the university colleges where health-related topics are taught. Being familiar with basic mathematical operations is recommended.

A minimum of 12 and a maximum of 32.

University College Copenhagen
Sigurdsgade 26
2200 København N

Tlf.: 24 29 62 75

Bachelor’s Degree in Global Nutrition and Health (GNH). Sigurdsgade 26, 2200 Kbh. N.

The course is worth 10 ECTS points, divided into theory (4 ECTS) and application (6 ECTS).

Anvendt biostatistik

You will need your own portable computer (Apple/PC) in order to be able to participate in this course

When you start - Literature

Urdan, T.C. (2010) Statistics in Plain English, 3rd ed. Routledge, New York. ISBN: 978-0-415-87291-1

  • Dalgaard, P. (2008) Introductory Statistics with R, 2nd ed., Springer. ISBN: 978-0-387-79053-4
    • Kirkwood B.R. and Sterne J.A.C. (2003) Essential medical statistics, 2nd ed. (many copies available at the campus library)

(Urdan’s and Dalgaard’s books are freely available on the internet.)

Links

http://www.r-project.org/
http://www.rstudio.com/

Contact

Alexandr Parlesak
PhD, lecturer
Phone 24 29 62 75
alpa@kp.dk